Odin Diesel Mongoose 56/23 Specification

This model provides a “self-contained” diesel powered “slide-in” type Compressed Air Foam System (CAFS). The CAFS shall be designed to fit into the back of a standard length and width pick-up truck or fire service body.

The CAFS shall be designed to discharge water only, air only, foam solution only or compressed air foam from the same discharge outlet. In addition, the consistency of the compressed air foam (expansion ratio), wet/dry shall be fully adjustable.

Engine
The power to drive the system shall be provided by a Kubota model DH 902, liquid cooled, indirect injection, naturally aspirated diesel engine. The heavy duty rating for this engine is 24.8 hp @ 3600 rpm. Automotive engines or ratings will not be used. The power unit shall have reborable crankcase of grey cast iron. The pressure-lubricated engine shall have a 12VDC – 40 amp alternator, glow plugs. A remote oil drain shall be supplied.

Water Pump
The water pump shall be a Darley 2BE single-stage centrifugal pump with a vertically split aluminum case. It shall have replaceable bronze impeller and seal rings on a stainless steel shaft. The pump seal shall be of a mechanical design.

Air Compressor
The air compressor shall be of the encapsulated screw type, designed and installed to supply a minimum of 50 cfm @ 125 psi (1416 L/min @ 8.6 b) of free air at maximum engine rpm. The compressor air/oil receiver shall be built and designed by the compressor manufacturer.

Manufacturer approved for Flows of 60 cfm @ 150 psi.

All air-lines shall be rated to a minimum of 250 psi (17.24 b). All control air fittings shall be of brass of chrome construction. Stainless steel or brass check valves shall be utilized at air injection points to prevent water/solution back-flow into air-lines.

Foam Concentrate Proportioner
The automatic foam proportioner shall be the Darley Fast Foam 50. It shall be provided and installed to inject foam concentrate into all foam discharges. The proportioner shall automatically meter the correct percentage of foam concentrate, based on current flow, into the water stream. A check valve shall be provided ahead of the foam injection point to prevent foam solution back-flow. The concentrate pump shall be a 12VDC, electrically driven, positive displacement pump. The concentrate pump shall be rated to flow ½ gpm @ 150psi (1.89L/min @ 10.3b). The proportioner on/off switch, ratio controls, operating instructions and low concentrate warning light shall be mounted on the pump panel.

Drive System
The water pump is directly driven off the engine crankshaft. The air compressor is belt driven off the engine crankshaft and aligned to the crank pulley by attachment to bell housing extension plate. The compressor shall be driven via a dry Gates Power grip® drive system. The complete drive system shall have a 2,000 hour rated service life and shall be designed and rated for the imposed speed and load.

Electrical System
All electrical equipment installed by the manufacturer shall conform to current automotive electrical system standards and the requirements of the applicable NFPA apparatus standards. The wiring shall be individually and permanently color and function coded. The installation shall meet SAE Standard J1128 in its latest edition for GXL or SXL temperature rating.

1Specifications are subject to change and improvements without notice.

* Gates Poly-Chain is a registered trademark of the Gates Corporation, dba The Gates Rubber Company.
All exposed wiring shall run in loom with a minimum of 280°F (137.8°C) rating. All wiring loom shall be properly supported and attached to frame members along the entire run. At any point where wire or looms must pass through metal, rubber grommets shall be installed to protect the wire from abrasion.

The main low voltage electrical terminal block and circuit breaker panel shall be provided behind the pump operator’s panel in a location providing easy service access.

The electrical connections shall be made using heat shrink and/or weatherproof connectors. All electrical circuits shall be protected with automatic reset circuit breakers or fuses.

Priming System

A Darley air powered jet primer oil-less system shall be utilized. The primer is capable of priming the water pump through 20’ of hard suction hose with an 8’ lift. Primer controls and instruction plate shall be mounted on the operator’s panel.

Plumbing, Hoses and Lines

All piping shall be stainless steel. Uses of grooved end pipe couplings are required for flexibility and movement of system components on mobile equipment. Hydraulic hoses will only be used for air injection lines and not control air lines. Flexible piping may be used where applicable. Check valves are required throughout the system to maintain integrity and shall be placed so that the air, water foam and foam solution do not inadvertently mix. Drain cocks shall be provided on the water pump to prevent freeze damage.

Tank to Pump

There shall be a 2.5” tank to pump suction valve fitted in the module and controlled from the operator’s panel.

Inlets

A 2½” NH male suction inlet with cap and lanyard shall be provided on the operator’s panel. Intake piping is 3” SS plumbing.

Water Only Outlet

There shall be one 2½” water only discharge with valve operator push pull provided on the control panel.

CAF Outlet

There shall be a 1½” NH Male CAF outlet on the panel, controlled by the single mix point. A swing check valve shall be installed on the mix point to prevent foam from back flowing into the pump. The CAF mix point controls shall be grouped together on the panel with easy to read calibration marks laser cut into the panel. The mix point foam solution valve shall be an Akron 1 ½” self-locking, swing-out valve.

Direct Tank Fill

A separate valve with a 2½” NH female swivel connection and plug shall be provided and controlled at the operator’s panel for “direct tank fill” operations with a pressurized water source.

Tank Refill

A 1½” tank refill line with a 1½” valve and flexible, reinforced wire-braid, hydraulic hose shall be provided.

Module Frame

The module frame shall be constructed of aluminum and designed for rigorous fire service use. Main structure will use 1.5’ square wall 6061 grade tubing, ¼’ thick wall. The structure will be rectangular in shape to facilitate the full cover lid and sides.
Lid
The lid shall be computer cut, ventilated, diamond plate aluminum with stainless steel hinge and pneumatic gas shock lift struts. The bracing of the lid will sustain the weight of a 250 lb person walking on the module lid when closed. Two snap latches will be incorporated to fasten the lid shut.

Corrosion Resistance Treatments
Die electric tape (laminating type UHMW) is used throughout the construction of the module for dissimilar metal contact surfaces. This will include, but not be limited to control panel to frame, engine mounts to frame, and solution injection unit to frame.

All SS screws, which secure the SS panel to the aluminum frame, will be treated with dielectric liquid. The majority of fasteners throughout the module will be SS. All electrical ground connections to the frame will be treated with dielectric silicone compound. Wire ends will have waterproof and corrosion resistant shrink tube, adhesive lined type terminals and connectors. All electrical plugs in the module will be environmentally sealed Deutsch type. The entire surface of the electric fuse / connection box will be treated with a urethane seal coat, to seal out moisture.

Control Panel
The control panel shall be laser cut, 16 gauge brushed stainless steel with special powder coat infusion on the face. The instruments, indicators and controls that are located on the control panel shall be positioned in a logical manner and clearly marked to provide for simple and easy operation. Color association is used for the handles to specific discharges. The following items shall be mounted on the control panel:

1. Ignition
2. Throttle
3. Fast foam 50 control
4. Primer control
5. CAF valve lever
6. Air valve
7. Operating instructions
8. CAF discharge
9. Water only push pull
10. Water only discharge
11. Primer Vacuum Gauge
12. Water pressure gauge
13. Air pressure gauge
14. Water level gauge
15. Tank to pump Valve
16. Tank refill valve
17. Suction Inlet
18. Direct tank fill push pull
19. Direct tank fill inlet
20. Pump drain
21. Loafa Engine control module
 a. Hour meter
 b. Tachometer
 c. Ignition switch
 d. Battery charge light
 e. Glow plug light
 f. Low oil pressure light
 g. Engine High Temperature light
 h. Low water pressure light
 i. High compressor temperature light
Labels
All controls, inlets and discharges shall be clearly labeled. The labels shall comply with applicable NFPA standards.

Testing
The completed unit shall undergo a manufacturer’s run-in test prior to delivery. The engine, pump and air compressor shall be operated for a minimum period of six (6) hours, during which time the test operator shall monitor and record the functions and performance of each system component. Compressed air foam shall be produced during the test.

This testing shall be performed to ensure proper system operation and performance prior to shipment. The manufacturer shall provide written certifications that the tested unit meets all performance criteria contained herein (NFPA). Water flow performance shall be tested in accordance with NFPA 1911. Airflow performance shall be measured with a temperature and pressure compensated air flow meter.

Manuals
One (1) copy of the Operation and Maintenance Manual and a CD copy shall be provided to the purchaser with each unit. This manual shall include detailed instructions in the operation and maintenance of the overall unit, engine, water pump, air compressor and foam proportioner.

Dimensions
Length 44” + 6” gap required for air flow
Width 47-3/4”
Height 36”
Weight 1100 lbs

Performance
Water Pump 120 gpm @ 100 psi
250 gpm @ 40 psi
Air Compressor 50 cfm @ 125 psi
Simultaneous Flow (NFPA) 56 gpm & 23cfm @ 125 psi
Simultaneous Flow 80 gpm & 40cfm @ 100 psi
Engine Horsepower 24.8hp @ 3600 rpm

Warranty
Engine 1 year
Compressor 1 year
Water Pump 3year/3000 hours
Chemical Injector 1 year
Water Tank Lifetime

All fabrication and materials are warranted for a period of two (2) years barring accidents, abuse or negligence. Excluding from warranty are all consumables and parts subject to routine replacement. We will repair or assist in the repair or replacement of the product in its entirety.

ii Covered by the original manufacturer’s warranty.
Mongoose Options
The list of options, which follow, can be added to the standard module according to your specifications and needs of operation. These options are not included in the base price of the module.

Water Tank
The water tank shall be rectangular in configuration and shall have a capacity based on the chassis GVW. The tank shall be constructed of ½” polypropylene sheet. All joints and seams are to be nitrogen welded.

The tank cover shall be constructed of ½” polypropylene and shall incorporate hold-downs to assist in keeping the cover rigid under fast filling conditions. The cover shall have a combination vent and manual fill tower. The tower shall have a hinged cover and a ¼” thick polypropylene screen. There shall be two (2) standard tank outlets; one for the tank to pump suction line and one for the tank fill line. An anti-swirl plate shall be installed at the tank-to-pump outlet. A manufacturer’s warranty shall be included for the tank.

A polypropylene foam reservoir shall be provided as an integral part of the booster tank and shall contain a low-level sensor in the bottom of the tank to signal when the foam reservoir needs to be filled. The tank shall be plumbed to supply the foam proportioner pump with a minimum ¾” hose (size varies per customer specifications).

The tank shall include all fittings, adapters, senders, switches and hoses necessary for tank to module connections.

Skid Frame and Water/Foam Tank
An aluminum weldment sub-frame shall be provided to support the entire slide-in module, with the base constructed of 2” x 4” x ¼” tubing. The sub frame shall be strong enough to support the weight of the booster tank and pumping equipment while in the apparatus and during loading and unloading and shall be utilized as a base mount for the engine, compressor and pump. Square tubing uprights with angled gussets shall extend up from the rear of the sub frame for attachment of the full width operator’s panel. Provisions shall be incorporated in the sub frame to facilitate using a forklift for loading and unloading of the unit.

The tank shall be bolted to the skid frame with stainless steel hardware through full width integral flange mounts at the front and rear. The water tank shall be completely removable without dismounting the skid unit.

Remote Start with Auto Throttle
The remote control panel shall be pre-wired with plug-in connectors for ease of installation. The standard wire harness length is twenty-five feet (25’). The remote start option shall include the auto throttle actuator mounted to the throttle linkage on the engine. The assembly shall include the following components mounted on an 8 ½”W X 7”H placard with the necessary labels permanently painted on the placard.

1) Battery
2) Glow plug
3) Eng Oil psi
4) Eng temp
5) Compressor temp
6) Low water psi.
7) FoamPro Remote On / Off Control (only available w/ FP 2001) OR FRC Tank Vision Mini Water Tank Level Gauge
8) Auto Throttle Switch with Safety Cover
9) Tachometer
10) Hourmeter
11) Ignition Switch
12) 97dB Audible Alarm
1. 5” CAF Discharge with Darley AUTOVALVE Mix Point Controller

One (1) 1.5” Compressed Air Foam Mix Point shall be located inside of the module. The 1.5” foam solution valve shall be a 3-piece swing-out valve constructed of brass or stainless steel. The mix point shall be a Darley AUTOVALVEiii. The Darley AUTOVALVE is intended for remote operation. Suggested uses might be Monitor, Front Cannon, or any remote discharge for CAF. The Darley AUTOVALVE control head shall be shipped loose.

Discharge Valve

The discharge valve shall be a 1½” ball valve mounted on the control panel CAF outlet.

Suction Valve

A 2.5” gated hydrant type suction valve, with 2.5” male NST threads and cap will be attached to the 2.5” male NST chrome suction intake.

Sides

The sides shall be computer cut, ventilated, diamond plate aluminum.

Economy Hose Reel

The hose reel shall be of painted steel construction with fairleads and electric rewind, installed with 100’ of 1” red rubber hose with one 1” plastic ball valve and ¾” tip. The hose reel shall be mounted on top of the water tank and shall have a straight swivel inlet.

CAF Hose reel

The hose reel shall be of aluminum and alloy construction with fairleads and electric rewind, installed with 100’ of 1” Niedner HotStop hose with one 1” metal pistol grip ball valve and tip. The hose reel shall be mounted on top of the water tank and shall have a straight swivel inlet.

Fuel Tank

A six-gallon poly fuel tank with a mounting bracket for the fuel tank shall be provided (Shipped loose).

iii The Darley AUTOVALVE is designed to integrate into a Compressed Air Foam System as a Mix Point control. The function of the AUTOVALVE is to automatically create different Types of Compressed Air Foam, foam solution or compressed air only discharge. The type of foam created by the AUTOVALVE is selected by the apparatus operator.
Odin® Mongoose “D” 56 /23

Standard Equipment

- **Engine** – Kubota 24.8 hp, water Cooled, 3 cylinder, Diesel Powered, 12 VDC Electric Start
- **Control Panel** – Illuminated Laser Cut, Brushed Stainless Steel Panel with infused powder coat painted labels, Foam Injection System Controls Installed
- **Air Compressor** – encapsulated screw, Manufacturer approved for Flows of 50 cfm @ 150 psi.

Engine Driven C.A.F.S.

- **Pump System** – Darley Model 2BE with One (1) Fully Adjustable 1½” CAF Discharge Mix Point, 2½” Water Discharge, 2½” Direct Tank Fill, 2½” NPT Suction Inlet, Air jet Primer, 2½” Water and Air Pressure Gauges, Pump Drain Valve, Stainless Steel Plumbing
- **Frame** – Lightweight Aluminum
- **Lid** – Precision Computer Cut, Ventilated, Hinged, Gas Shock Lift Struts, Latched, Fully Assembled Lid
- **Foam Proportioner System** – Darley Fast Foam 50 Class “A” Foam Proportioner

Options

- 250/15 gallon Water/Foam Poly Tank with Tank Kit, Installed on Full Poly Skid Frame (Larger tanks – Price on Request)
- 250/15 gallon Water/Foam Poly Tank (Shipped Loose) with Tank Kit – All Fittings, Boots, Clamps, Pipes, and Tank Mount Rubber Necessary to Connect the Module to a Water/Foam Tank (Larger tanks – Price on Request)
- 1½” Discharge Valve with 1½” NH Chrome Adapter (*Necessary for Multiple Discharge Points*)
- Cap – Chrome 1½” NH with Lanyard
- 2½” Suction valve (*Gated hydrant type*)
- Sides – Ventilated, Precision Computer Cut (2 each)
- Economy Hose Reel - Painted Steel Construction, Installed with 100’ of 1” Red Rubber Hose, 1” Plastic Ball Valve and ¾” Tip.
- CAF Hose Reel – Aluminum, Installed with 100’ of 1” Niedner Hose, 1” Pistol Grip Ball Valve and Tip
- Fuel Tank – 6 Gallon Fuel Tank and Mounting Bracket Assembly (*shipped loose*)
PAINTED

OPERATING INSTRUCTIONS

STARTING ENGINE

1. OPEN TANK TO PUMP VALVE
2. TURN IGNITION SWITCH TO ON
3. WAIT FOR GLOW PLUG LIGHT TO TURN OFF
4. PRIME PUMP
5. START ENGINE - IDLE ONLY
6. PULL PRIMER OUT

ODIN C.A.F.S. OPERATION

1. THROTTLE PUMP - 90 TO 140 PSI
2. TURN ON FOAM SYSTEM - SET TO .5%
3. OPEN WATER VALVE TO CAF SETTING
4. OPEN AIR VALVE FULLY

SHUTDOWN

1. CLOSE AIR VALVE - TURN FOAM SYSTEM OFF
2. FLUSH HOSE WITH WATER
3. REDUCE RPM'S SLOWLY - IDLE 10 SECONDS

NFPA 1906 - 128.2 40 CFM @ 125 PSI
CONTROL PANEL

1. WATER LEVEL GAUGE
2. COMPRESSOR TEMP LIGHT
3. FAST FOAM 50 CONTROLLER
4. ALARM
5. C.A.F.S. CONTROLLER
6. AIR VALVE
7. WATER ONLY DISCHARGE PUSH PULL
8. WATER ONLY DISCHARGE
9. C.A.F. DISCHARGE
10. OPERATING INSTRUCTIONS
11. PRIMER CONTROL
12. PUMP INTAKE GAUGE
13. WATER PRESSURE GAUGE
14. AIR PRESSURE GAUGE
15. LOFA CONTROL BOX
16. THROTTLE
17. TANK TO PUMP VALVE
18. TANK REFILL VALVE
19. DIRECT TANK FILL VALVE
20. SUCTION
21. DIRECT TANK FILL
22. PUMP DRAIN

OPERATING INSTRUCTIONS

STARTING ENGINE
- OPEN TANK TO PUMP VALVE
- TURN IGNITION SWITCH TO ON
- WAIT FOR GLOW PLUG LIGHT TO TURN OFF
- PRIME PUMP
- START ENGINE - IDLE ONLY
- PULL PRIMER OUT

ODIN C.A.F.S. OPERATION
- THROTTLE PUMP - 90 TO 140 PSI
- TURN ON FOAM SYSTEM - SET TO .5%
- OPEN WATER VALVE TO CAF SETTING
- OPEN AIR VALVE FULLY

SHUTDOWN
- CLOSE AIR VALVE - TURN FOAM SYSTEM OFF
- FLUSH HOSE WITH WATER
- REDUCE RPM'S SLOWLY - IDLE 10 SECONDS

NFPA 1906 - 128.2 40 CFM @ 125 PSI

- TURN IGNITION SWITCH TO START
- PUSH HANDLE IN WHEN PRIMED
- TO CHANGE FOAM TYPE, ADJUST WATER DISCHARGE